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In this paper the drag-out problem for shear-thinning liquids at variable inclination angles is considered. For
this free boundary problem dimension-reduced lubrication equations are derived for the most commonly used
viscosity models, namely, the power-law, Ellis, and Carreau model. For the resulting lubrication models a
system of ordinary differential equations governing the steady state solutions is obtained. Phase plane analysis
is used to characterize the type of possible steady state solutions and their dependence on the rheological
parameters.
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I. INTRODUCTION

The drag-out problem, which is the problem of with-
drawal of a plate or fiber from a liquid bath, is one of the
fundamental problems in fluid mechanics and has many ap-
plications in nature and technology. The seminal paper on
this problem was given by Landau and Levich �1� and sys-
tematic extensions can be found in �2–4�. While the methods
in these studies could be extended and used in various appli-
cations �5,6�, they focus on Newtonian liquids. However,
many applications that are concerned with polymeric liquids
and suspensions show nonlinear stress-strain relationships,
see, e.g., �7,8�. In fact, most polymer solutes used in coating
exhibit some degree of shear-thinning behavior. Typically,
they show distinct viscosity regimes when subject to shear
stress. At very low shear rates they behave as a Newtonian
fluid; as the shear rate increases the behavior starts to be-
come nonlinear, after further increase it moves into a regime
where the viscosity can be modeled by a power-law relation.
Finally, at very high shear rates the behavior becomes New-
tonian once more.

While most studies in coating flows were concerned with
applications of spin coating, rimming flows, or flows of films
down an inclined plane, see, e.g., �9–16�, we are interested in
studying the relevant parameters that control the shape of the
free boundary exhibited by shear-thinning liquids during the
steady withdrawal from a reservoir. We choose for our stud-
ies some of the most commonly used viscosity models,
which are the power-law, the Ellis, and the Carreau-Yasuda
model. A recent discussion on the suitability of these models
for studying thin film flows of shear-thinning liquids is given
in �17� for the case of flows in thin channels, i.e., surface
tension is neglected. Here, we use asymptotic arguments to
systematically derive from the underlying equations of con-
servation of momentum and mass, together with the bound-
ary conditions of normal and tangential shear stress, the lead-
ing order equations. These can be integrated out to yield
extended lubrication models for the profile of the film that
take account of surface tension and are also valid in the
meniscus region.

In the following sections we are concerned with the
steady states. For all three models we can derive a system of
ordinary differential equations for the steady state solutions.
A careful phase plane analysis then shows the existence of
two types of solutions: type I corresponding to a monotone
film profile and type II corresponding to a spatially oscillat-
ing film profile. We develop criteria for the power-law and
Ellis model that select the type of solution. Another differ-
ence between these solutions is also the thickness of the
films toward the uniform region far away from the meniscus
and is being discussed in a separate section where matched
asymptotic solutions and numerical solutions are compared.

II. PROBLEM FORMULATION

We consider the evolution of a thin layer of non-
Newtonian shear-thinning liquid on the inclined plane that
can be withdrawn from a bath with velocity U, see Fig. 1, or
pushed into a bath with velocity −U, at the angle � with the
vertical axis. Here, we only consider the two-dimensional
case where the solution is independent of the coordinate ȳ

and the thickness of the film is denoted by h̄�x̄ , t̄�. As usual,
x̄ and z̄ denote the axes in streamwise and cross-stream di-
rections, respectively.

The balance laws for momentum and mass of an incom-
pressible fluid of density � in the presence of gravity are

�
dū

dt̄
= − p̄x̄ − �̄x̄

xx − �̄z̄
zx − �g cos � , �2.1a�
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FIG. 1. Thin film withdrawn at an angle � from a liquid

reservoir.
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�
dw̄

dt̄
= − p̄z̄ − �̄x̄

xz − �̄z̄
zz − �g sin � , �2.1b�

and

ūx̄ + w̄z̄ = 0 �2.1c�

for 0� z̄� h̄ and −�� x̄� +�. Here, we denote d /dt=�t

+u�x+w�z. At the free surface z̄= h̄ we have the normal and
tangential stress conditions

�̄zz − 2�̄xzh̄x̄ + �̄xxh̄x̄
2

1 + h̄x̄
2

− p̄ = �	̄ �2.1d�

and

��̄zz − �̄xx�h̄x̄ + �̄xz�1 − h̄x̄
2� = 0, �2.1e�

respectively. At the surface of the plane z̄=0 we require the
no-slip condition and impermeability of the plane, i.e.,

ū = U, w̄ = 0, �2.1f�

where ū�x̄ , z̄ , t̄� and w̄�x̄ , z̄ , t̄� denote the fluid velocity vector
components, and �� is the shear stress tensor

�� = ��̄xx �̄xz

�̄zx �̄zz �, 
̇� = � 2ūx̄ ūz̄ + w̄x̄

ūz̄ + w̄x̄ 2w̄x̄
� ,

which is related to the strain tensor via

� = − �
̇� . �2.2�

We denote by � the viscosity and 
̄̇ is the strain rate,


̄̇ = �2ūx̄
2 + ūz̄

2 + 2ūz̄w̄x̄ + w̄x̄
2 + 2w̄z̄

2�1/2. �2.3�

Additionally we include, in particular for the cases of verti-
cal drag-out, the nonlinear curvature at the free boundary

h̄�x̄ , t̄�,

	̄ =
h̄x̄x̄

�1 + h̄x̄
2�3/2

. �2.4�

For a discussion of the importance of this modification see,
e.g., �3,2�.

Some of the most well-known viscosity models for shear-
thinning or shear-thickening fluids are the power-law model

� = m
̄̇n−1 �2.5�

that is pseudoplastic or shear thinning for n�1 and shear
thickening if n�1, the Ellis model, given by

�0

�
= 1 + � �

�1/2
�q−1

, �2.6�

where �0 denotes the viscosity at zero shear and �1/2 is the
value at which �=�0 /2, and the Carreau-Yasuda model

� − ��

�0 − ��

= �1 + �

̇�c��k−1�/c, �2.7�

where �0 and �� are the limiting viscosities at low and high
shear rates, respectively. We note that, unlike the Ellis and
Carreau-Yasuda models, the power-law model is only meant
to apply at large shear rates. While the Ellis model may for
certain liquids underpredict the viscosity in the low shear
transition region from power law to Newtonian behavior, the
results in �17� show that in many cases it compares well with
the results for the Carreau-Yasuda model, which is most
commonly employed for industrial applications. The main
advantage of the Ellis model over Carreau-Yasuda is that, in
the case of a film with a free surface, an explicit expression
for the film profile may be derived. Nevertheless, we show
here that for the case of ��=0 and c=2, i.e., the so-called
Carreau model, we still can derive a dimension-reduced lu-
brication model.

In the following section we derive the lubrication equa-
tions for these models for the drag-out problem. We will take
account of the nonlinear curvature which will be important
when � is small, or even zero for the case of vertical drag-
out.

III. LUBRICATION MODELS FOR POWER-LAW, ELLIS,
AND CARREAU MODELS

To begin with, we introduce dimensionless variables

x̄ = Lx, ū = Uu, p̄ = Pp, h̄ = Hh ,

z̄ = Hz, w̄ = Ww, t̄ = Tt ,

and assume that

U

L
=

1

T
and � =

H

L
� 1.

From this and the continuity equation �2.1c� we find that the
velocity scales are related by U=�W.

The nondimensional strain rate 
̇ becomes


̄̇ =
U

H

̇, 
̇ = �2�2ux

2 + uz
2 + 2�2uzwx + �4wx

2 + 2�2wz
2�1/2.

Hence the shear stress components for the power-law model
can be written as

�̄xx = −
mUn

Hn �2ux
̇
n−1,

�̄xz = −
mUn

Hn �uz + �2wx�
̇n−1,

�̄zz = −
mUn

Hn 2�wz
̇
n−1,

�̄x̄
xx = −

mUn

Hn+1�2�2ux
̇
n−1�x,
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�̄z̄
xz = −

mUn

Hn+1 ��uz + �2wx�
̇n−1�z,

�̄z̄
zz = −

mUn

Hn+1��2wz
̇
n−1�z,

�̄x̄
xz = −

mUn

Hn+1���uz + �2wx�
̇n−1�x.

As usual, the characteristic scale for the pressure is obtained
by balancing the x-momentum equation �2.1a� px with the
dominant viscous stress term �z

xz then

P =
mUn

�Hn . �3.1�

Requiring the balance of the normal pressure and surface
tension at the free surface yields

P =
��2

H
. �3.2�

This in turn yields for the capillary number

Ca =
�U

�
=

mUn−1U

Hn−1�
=

mUn

Hn−1�
= �3. �3.3�

Balancing �z
xz in Eq. �2.1a� with the gravity term yields an

expression for the characteristic height

H = � mUn

�g cos �
�1/�n+1�

. �3.4�

Hence we obtain for the dimensionless governing equa-
tions

�4 Re
du

dt
= − px + �2�2ux
̇

n−1�x + ��uz + �wx�
̇n−1�z − 1,

�3.5a�

�6 Re
dw

dt
= − pz + �2��uz + �2wx�
̇n−1�x + �2�2wz
̇

n−1�z − D ,

�3.5b�

ux + wz = 0, �3.5c�

for 0�z�h�x , t� and −��x� +�. At the free boundary z
=h we find now

p = −
hxx

�1 + �2hx
2�3/2 + �22�wz − �uz + �2wx�hx + �2uxhx

2�
̇n−1

1 + �2hx
2 ,

�3.5d�

0 = 2�2�wz − ux�hx + �uz + �2wx��1 − �2hx
2� �3.5e�

and at the surface of the plate z=0 we have

u = 1, w = 0. �3.5f�

The dependence on the inclination angle is now contained in
the parameter

D = � tan � . �3.5g�

To leading order in � we find �xz=−uz�uz�n−1 and obtain the
following free boundary problem:

0 = − px − �z
xz − 1, �3.6a�

0 = − pz − D , �3.6b�

0 = ux + wz �3.6c�

with boundary conditions

u = 1, w = 0 at z = 0, �3.7a�

uz = 0, p = − 	 at z = h�x� . �3.7b�

We would like to note at this point that, given the proper
scaling �given below�, we obtain the same leading order
problem Eqs. �3.6� and �3.7� that forms the basis for the
derivation of the lubrication equations for the Ellis and Car-
reau model �see Appendixes A and B�. This problem can
now be integrated to yield a single partial differential equa-
tion for the profile h�x , t�. We obtain first the pressure by
integrating Eq. �3.6b� with respect to z from z to h and use
the boundary condition �3.7b�

p = − 	 + D�h − z� . �3.8�

From the leading order equation �3.6a� we can get

�uz�uz�n−1�z = − �	x − Dhx − 1� �3.9�

and integrating this from z to h�x , t� and noting that z
�h�x , t�,

uz = ����1−n�/n��h − z�1/n, �3.10�

where

� = 	x − Dhx − 1. �3.11�

We integrate this equation once more from 0 to z and use the
no-slip condition to get for the velocity

u�z� = 1 −
n

n + 1
���1−n/n���h − z�n+1/n − hn+1/n� . �3.12�

This can now be used in the kinematic condition at the free
boundary

�th = − �x	
0

h

udz �3.13�

to obtain

�th = − �x
h − ����1−n�/n�
n

n + 1
� n

2n + 1
h�2n+1�/n − h�2n+1�/n�� ,

�3.14�

or, introducing the time scale t→ 2n+1
n t we get the following

lubrication equation for the power-law model:

�th = − �x
h�2n+1�/n����1−n�/n� +
2n + 1

n
h� �3.15�

with boundary conditions
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lim
x→�

h = h�, lim
x→�

hx = 0, �3.16a�

lim
x→−�

	 = 0, lim
x→−�

h = � . �3.16b�

In principle, the derivation of the lubrication approxima-
tion for the Ellis and Carreau-Yasuda models are quite simi-
lar as demonstrated above. We therefore state only the main
differences here and refer for details to the corresponding
appendixes.

For the Ellis model the balance in the x-momentum equa-
tion of px with the dominant viscous stress term �z

xz now
yields the following characteristic scale for the pressure:

P =
�0U

2�H
. �3.17�

Similarly, balancing �z
xz in the x-momentum equation with

the gravity term gives the following characteristic height:

H = � �0U

2�g cos �
�1/2

. �3.18�

Here, �0, the viscosity at zero shear, is used to nondimen-
sionalize the viscosity

�̄ =
�0

2
� , �3.19�

where

�0

�̄
= 1 + � �̄

�1/2
�q−1

�3.20�

and hence

2

�
= 1 + E1−q��xz�q−1 �3.21�

with

E =
2H�1/2

�0U
. �3.22�

The resulting nondimensional equations can now be inte-
grated, resulting in the following expression for the velocity:

u =
1

2
��hz − z2� +

����q−1

2Eq−1 � − 1

q + 1
�h − z�q+1 +

1

q + 1
hq+1� + 1

�3.23�

from which we obtain, after rescaling time as t→3t, from the
kinematic condition the lubrication equation for the Ellis
model,

�th = − �x
1

2
��h3 +

3

q + 2

1

Eq−1����q−1hq+2� + 3h�
�3.24�

together with the boundary conditions �3.16�.
Finally, for the Carreau-Yasuda model note first that the

parameter 
 is assumed to be of order O�1/��, i.e.,


̄ = 
T = 
��T , �3.25�

where 
�=O�1�. If 
 would be of larger or smaller order the
lubrication scaling we consider below would simplify into
the lubrication problem for the power-law or Newtonian
case, respectively. Additionally, we set ��=0 for simplicity.

Hence we have

� = �0�1 + �
�
̇�c��k−1�/c �3.26�

and the shear stress components are

�̄xx = −
�0U

H
�2ux�1 + �

̇�c��k−1�/c,

�̄xz = −
�0U

H
�uz + �2wx��1 + �

̇�c��k−1�/c,

�̄zz = −
�0U

H
�22wz�1 + �

̇�c��k−1�/c.

Integrating the system �3.6a�, �3.6b�, �3.6c�, �3.7a�, and
�3.7b� once with respect to z we find

uz�1 + �
�uz�c��k−1�/c = ��x,t��h − z� . �3.27�

As shown in Appendix B, one can find for the velocity u the
representation

u�x,z,t� = −
F��„g�z�…� − F��„g�0�…�

c
�2�
+ 1, �3.28�

where

F��� =	 ��2−c�/c�1 + k��
�1 + ���1−k�/c+1 d� �3.29�

can be written in terms of generalized hypergeometric func-
tions, and where � and g are related by

��1 + ��k−1 = g�x,z,t�, with g: = �
�����h − z��c.

�3.30�

Furthermore, for the Carreau model, i.e., c=2, one can inte-
grate once more to obtain a representation for the flux

QC�x,t� = 	
0

h

udz =
��0


�3�k + 1�
1

����
 k�0 − 1

��0 + 1��1−k�/2

��F1 +
k�0

3
F2� + �F3 −

k2�0
2

5
F4�� + h

and hence the corresponding lubrication equation

�th = − �xQ
C, �3.31�

where the Fi denote the following generalized hypergeomet-
ric functions, see, e.g., �18�:

F1 = F�1

2
,
3 − k

2
;
3

2
;− �0� , �3.32�

F2 = F�3 − k

2
,
3

2
;
5

2
;− �0� , �3.33�
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F3 = F�1

2
,2 − k;

3

2
;− �0� , �3.34�

F4 = F�5

2
,2 − k;

7

2
;− �0� , �3.35�

and

w0 = w�g�0�� ,

together with the boundary conditions �3.16� at x→ ±�. We
next investigate the steady state solutions for these models.

IV. STEADY STATES

A. Power-law, Ellis, and Carreau models

Set �th=0 in Eq. �3.15� and integrate with respect to x
using the boundary conditions �3.16� to obtain for the flux at
+�. For convenience set

a =
2n + 1

n
, and b =

1 − n

n
. �4.1�

Then we have

ha����b + ah = Q�
PL, �4.2�

where the flux at +� is

Q�
PL = ah� − h�

a . �4.3�

Note now, that in the case of a power-law viscosity we can
obtain an explicit expression for � as a function of h. Let us
denote it with

�PL =
�Q�

PL − ah��Q�
PL − ah�n−1

h2n+1 . �4.4�

Therefore we obtain the following third order ODE for the
steady states:

� hxx

�1 + �2hx
2�3/2�

x

= 1 + Dhx + �PL �4.5�

We solve this ODE by first writing it as a system of first
order equations. For this we note first that, if we define


�x� =
hx

�1 + �2hx
2

�4.6�

then 
x=	. Hence the system can be written as

hx =



�1 − �2
2
, �4.7�


x = 	 , �4.8�

	x = 1 +
D


�1 − �2
2
+ �PL �4.9�

as long as ��
��1. The boundary conditions are

h → h�, 
 → 0, 	 → 0 as x → � , �4.10a�

i.e., toward the flat film, and

h → �, 
 → − 1/�, 	 → 0 as x → 0,

�4.10b�

that is, toward the reservoir. The conditions in the thin flat
film are h=h�, 
=0 �since hx=0� and 	=0 as x→�.

For the Ellis model we solve the same first order system
�4.7�–�4.9�, except that now �PL is replaced by �E in Eq.
�4.9�. Now, �E is the solution of

�E

2

1 +

3

q + 2
� h

E
�q−1

��E�q−1�h3 + 3h = Q�
E , �4.11�

where

Q�
E = 3h� −

1

2

1 +

3

q + 2
�h�

E
�q−1�h�

3 . �4.12�

For the Carreau model �PL is replaced by �C, which is the
solution of

QC�x,t� = Q�
C, �4.13�

where Q�
C is given by

Q�
C = h� −

���


�3�k + 1�
 k�� − 1

��� + 1��1−k�/2�F1 +
k��

3
F2�

+ �F3 −
k2��

2

5
F4�� .

The functions Fi are as in Eqs. �3.32�–�3.35� but for the
argument �� instead of �0, where �� is the solution of

���1 + ���k−1 = �
�h��2. �4.14�

B. Classification of type I/type II solutions

We now discuss the possibility of steady state meniscus in
more detail, i.e., of solutions of the system �4.7�–�4.9� which
satisfy the required boundary conditions at zero and infinity,
see Eq. �3.16�. For simplicity, we focus first only on the
power-law fluid, and later explain how the results carry over
to the other types of fluids considered in this paper.

For a given value of Q�, the ODE system typically has
two equilibriums, B= �hB ,0 ,0� and T= �hT ,0 ,0�, each of
which can serve as the right far field state for the meniscus
solution. Specifically, for 0�Q��a−1, the two values hB
�hT are the two solutions of the equation

ahI − hI
a = Q�, I � 
B,T� .

One easily finds that these solutions satisfy 0�hB�1�hT.
The trajectory of a meniscus solution must lie on the

stable manifold of either B or T. Linearizing Eqs. �4.7�–�4.9�
near I=B or I=T yields the system

�h,
,	�� = JI�h,
,	� ,

where JI is the Jacobian for the right-hand side of Eqs.
�4.7�–�4.9�, i.e.,
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JI = � 0 1 0

0 0 1

rPL 0 0
� , �4.15�

where

rI
PL =

2n + 1

hI
�1 − hI

1−a� . �4.16�

The eigenvalues of JI are the solutions of


3 = rI
PL. �4.17�

If rI
PL�0, then we have one negative real eigenvalue and a

pair of complex conjugate eigenvalues with positive real
part. In this case, the corresponding fixed point has a one-
dimensional stable manifold. Conversely, if rI

PL�0, the fixed
point has a two-dimensional stable manifold.

From the definition of a, we have a−1= �n+1� /n�0.
Hence we find that rI

PL�0 if and only if hI�1, i.e., for the
lower fix point, hI=hB. Trajectories that connect to this fixed
point as x→� must therefore be identical with one of the
two branches of the one-dimensional stable manifold Ws�B�.
Conversely, for the top equilibrium, trajectories must lie on
the two-dimensional stable manifold Ws�T�. Due to the pair
of complex eigenvalues, h�x� will go through an infinite se-
quence of decaying oscillations as the trajectory approaches
T. Following Münch and Evans �19�, we distinguish menis-
cus solutions by the equilibrium they connect to: Solutions
with trajectories that lie on Ws�B� are called type I meniscus
solutions, while those which connect to T are called type II
solutions.

To complete this discussion, we also need to characterize
the trajectories that satisfy the boundary condition at x→0.
Note that it is sufficient to find solutions for which h blows
up as x approaches any finite value of x and 	 goes to zero;
since the system of ordinary differential equations
�4.7�–�4.9� is autonomous, the singularity can always be
shifted to zero.

If h and hx blow up, the dominant term on the left-hand
side of Eq. �4.5� is �hxx /�3hx

3�x, and −1 on the right. To cap-
ture the leading behavior of h as x→0, we can either choose
to balance the two and assume that the left-hand side van-
ishes to leading order. It turns out that the latter case leads to
a bounded solution, and can be ruled out. Furthermore, by
enforcing the balance and integrating up, one obtains that the
only possibility for blow up is

h�x� � − �−3/2 ln x + c, for x → 0, �4.18�

where c is an arbitrary constant. This also fixes the behavior
of 
 and 	: we can conclude that


�x� � −
1

�
+

1

2
x2, and 	�x� � x, as x → 0.

�4.19�

The presence of a free constant in Eq. �4.18� suggests that
the boundary condition imposed on h at the reservoir, i.e., at
x→0, restricts the possible solutions to a two-dimensional
manifold of trajectories, which we denote by W0. Then, type

I meniscus solutions arise from a codimension-1 intersection
of W0 and Ws�B�, which generically break under perturba-
tions of the parameters, in particular, if Q� hence hB are
changed with the other parameters held fixed. We therefore
expect that type I solutions will only exist for certain discrete
far field film thicknesses hB and flow rates Q�. In fact, nu-
merical evidence suggests that there is at most one value for
Q� and one type I meniscus solution. On the other hand,
intersections of W0 and Ws�T� have codimension 0 and there-
fore generically persist under perturbations. Thus for type II
solutions, we expect that the film thickness can be varied
continuously.

We can now explore the situation in phase space system-
atically by computing the two branches of Ws�B� and suffi-
ciently densely spaced orbits on Ws�T� and W0, using a nu-
merical integrator �LSODE �20��. The initial values for
Ws�B� and Ws�T� were obtained from the eigenspaces of JI

and the integration carried out in the direction of decreasing
x, and from Eqs. �4.18� and �4.19� for W0, for which the
integration was carried out forward in x.

In Fig. 2, we show the intersections of the trajectories
with the Poincaré-Plane P= 
�h ,
 ,	� ; h=3.0�. The values
we chose were n=1, i.e., the Newtonian case of the power-
law model, �=1, and Q� was the value for which a type I
solution arises. This can be seen from the fact that the box
which marks the point where Ws�B� intersects the Poincaré-
plane lies on top of W0� P, indicating that the corresponding
trajectory satisfies all required boundary conditions at x→0
and at x→�.

Clearly visible is also the spiral structure in Ws�T�� P.
This spiral arises for very similar reasons as in the phase
space diagrams discussed for traveling wave solutions of
Marangoni-gravity driven films �21� and menisci �19�.
Briefly explained, it arises because trajectories on Ws�T� that
pass close to B are “warped” around Ws�B� due to the pres-
ence of the two unstable complex conjugate eigenvalues of
the linearized ODE system near B, thus forming a spiral

-0.48 -0.42 -0.36
εγ

3.5

4

4.5

κ

W
s
(T) ∩ P

W
0∩ P

W
s
(B) ∩ P

1
2

1
2

FIG. 2. Poincaré section of the invariant manifolds with the
plane P= 
�h ,
 ,	� ; h=3.0�, obtained numerically for the Newton-
ian case of the power-law model, i.e., with n set to one, and with
�=0.1.
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structure with infinite windings and Ws�B� located at its cen-
ter. Since the latter lies on top of W0, we expect an infinite
number of intersections of Ws�T�� P and W0� P, each of
which give rise to a different type II solution. Only the first
two of these intersections are distinguishable in Fig. 2.

Profiles of the type I solution and the type II solution
corresponding to the intersection of Ws�T�� P and W0� P
labeled in Fig. 2 are shown in the next figure, Fig. 3�a�.
While the type I solution decays monotonically onto the flat
film thickness h�=hB at x→�, the type II solution has a
typical “dip” close to where it connects to the reservoir, and
then decays through an infinite sequence of oscillations onto
h�=hT. It is also instructive to look at projections of the
trajectories of these two solutions onto the �
-	 plane,
shown in Fig. 3�b�. Both curves connect to the origin at x
→�, and to �−1,0� at x→0, as required by the boundary
conditions in Eq. �4.10�. While for the curve for the type I
solution, 
 behaves monotonically �as a function of the
arclength�, the type II curve has a spiral near the origin,
arising from the oscillatory decay onto the flat film at x
→�.

Most of these derivations carry over for the Ellis mode.
Basically, rPL has to be replaced by the appropriate expres-
sion rE in Eq. �4.15� and subsequent equations, which turns
out to be

rE =
3

1 + 3q
q+2� h�

E �q−1�1 + � h�

E �q−1

h�

−
2

h�
3 � . �4.20�

Again, the sign of this expression determines the properties
of the eigenvalues of the linearized ODE system, and we find
the same situation: A single real negative eigenvalue for the
lower fix point B and a complex conjugate pair with a nega-
tive real part for T. Also, the situation for W0 and in particu-
lar its dimension remains the same. Hence the codimension
of the intersections of invariant manifolds that give rise to

type I and type II solutions are as they were for the power-
law model.

However, the upper bound for hB, which is also the lower
bound for hT, is no longer one, but depends on E; denote it

by h̄�E�. It is given by the solution of

h̄�E�2

2

1 + � h̄�E�

E
�q−1� = 1. �4.21�

Note that this bound on hB and hT delimits the range from
above and below for the flat film thickness of the type I and
type II meniscus solutions. In particular, the flat film thick-
ness h�=hB for type I solutions must lie in the interval from

0 to h̄�E�. Noting that the Ellis model is only used for shear
thinning liquids, q�1, we find that for E→0 this bound
shrinks to zero. Conversely, for large E→�, we obtain

h̄�E�→�2�1. This means that the type of solution may also
be influenced by the shear stress �1/2 far upstream.

V. FILM THICKNESS

A. Asymptotic analysis

The film thickness h� that is attained in steady state can
be found easily by asymptotic expansions, matching the in-
ner solution, valid in the thin film region to the outer solu-
tion of the meniscus region. This can be done in a very
similar fashion for both the power-law model and the Ellis
model.

1. Power-law model

In the inner region the surface tension and flux terms, i.e.,
the term on the left of Eq. �4.5� and the last term on the right
side of Eq. �4.5� must balance. This is achieved via the inner
scaling

0 15
x

0

15

h

Type I
Type II

-1 -0.5 0
εγ

0

4

κ

Type I
Type II

(a) (b)

FIG. 3. �a� Profiles of the type I meniscus solution corresponding to the center of the spiral in Fig. 2, and of one of the type II solutions,
corresponding to the intersecion of Ws�B� and Ws�T� with P labeled “1” in Fig. 2. �b� Projections of the trajectories for these two solutions
onto the �
-	-plane.
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x = ���, h = �3�/�n+2��, h� = �3�/�n+2�� . �5.1�

Note here that unlike the Newtonian case, � is not known at
this point and has to be determined by matching to the outer
solution. Assuming the solutions have the asymptotics ex-
pansions

���;�� = �0��� + ��1��� + O��2� ,

���� = �0 + ��1 + O��2� , �5.2�

we find for the leading order inner problem

�0
2n+1�0�� = − an��0 − �0�n, �5.3�

where the prime=��. Clearly, in the limit as �→� the solu-
tion will tend to the uniform thickness �0→�0. The behav-
ior toward the meniscus region can be found to have the
form

�0��� = A�n�� an

�0
n+2�2/3

�0�2, as � → − � , �5.4�

where the constants have to be matched by the solution of
the outer problem, valid in the meniscus and A�n� is deter-
mined by the numerical solution of Eq. �5.3�. The outer scal-
ing is given by

x = �−1/2� and h = �−3/2� . �5.5�

Hence the outer problem is simply

d

d�
� ���

�1 + ��
2�3/2� = 1, �5.6�

which behaves as

���� =
�2

2
�2 as � → 0. �5.7�

Written in inner coordinates yields

�0��� = �s
�2

2
�2, where s = 2� + 1 −

3

2
−

3�

n + 2
;

�5.8�

but in order to match to Eq. �5.4� s must be zero. Therefore
matching yields the yet unknown scaling factor

� =
n + 2

4n + 2
. �5.9�

Furthermore, matching the coefficients yields

�0 = �2n + 1

n
�2n/�2n+1�

��2A�n��3/�2n+1�. �5.10�

Since h�=�3/4n+2�0, we finally obtain for the film thickness

h� = �3/�4n+2��2n + 1

n
�2n/�2n+1�

��2A�n��3/�2n+1�. �5.11�

2. Ellis model

Here, the inner scaling is achieved by setting

x = ���, h = �3�q/�2q+1��, h� = �3�q/�2q+1�� ,

�5.12�

which is the scaling that balances the second term of the
left-hand side of the equation

1

2

1 +

3

q + 2
� h

E
�q−1

���q−1�h3�

= − 3�h − h�� +
h�

3

2

1 +

3

q + 2
�h�

E
�q−1� �5.13�

with the first term on the right-hand side. As is the power-law
case, the exponent � is yet unknown and has to be deter-
mined by matching to the outer solution. Additionally, we
note that the balance of the first term on the left-hand side
would lead to the scaling for the Newtonian case, and a
balance where both terms balance the first term on the right-
hand side leads to inconsistencies.

Assuming asymptotic expansions as in Eq. �5.2� we now
find with the scaling �5.12� to leading order the inner prob-
lem

E1−q

2�q + 2�
�0

q+2�0���0��q−1 = − ��0 − �0� . �5.14�

Since �0−�0�0 and �0�0 this equation can be written as

�0
q+2�0� = − ��0 − �0�1/q��q−1��q+2�/q�2�q + 2�

E1−q �1/q

.

�5.15�

Its solution attains the form

�0 = C�q�� 2�q + 2�
E1−q�0

2q+1�2/3q

�0�2 as � → − � .

�5.16�

The outer problem is the same as before, i.e., given by Eqs.
�5.5�–�5.7�. Matching with Eq. �5.16� yields

� =
1

2

2q + 1

q + 2
. �5.17�

Solving for h�, we find

h� = �3/2q/�q+2��C�q��2�3q/�q+2� �2�q + 2��2/�q+2�

E2�1−q�/�q+2� ,

�5.18�

where again, C�q� is found by solving Eq. �5.15�. Note that
in both cases, higher order corrections can now in principle
be carried out, as demonstrated in �2� for the Newtonian
case, but one needs to ensure that no contributions neglected
in the approximation leading to the governing equation
�3.15� together with Eqs. �4.4� and �2.4� will become impor-
tant.

B. Comparison with numerical results

We rewrite asymptotic expressions for the type I meniscus
solution’s film thickness obtained �Eq. �5.11�� for the power-
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law and in Eq. �5.18� for the Ellis-model to group the coef-
ficients that only depend on n or q, respectively. We obtain,
respectively,

h�
PL = Ã�n��3/�4n+2� �5.19a�

with

Ã�n� = �2n + 1

n
�2n/�2n+1�

��2A�n��3/�2n+1�, �5.19b�

and

h�
E = C̃�q�E2�1−q�/�q+2���3/2�/q/�q+2�, �5.20a�

with

C̃�q� = �C�q��2�3q/�q+2��2�q + 2��2/�q+2�. �5.20b�

We determined A�n� and C�q� by solving the appropriate
inner problem numerically. For large negative values of −x,
the second derivative of the solution with respect to x con-
verges to a constant value, which is twice A�n� or C�q�, for
the power-law or the Ellis model, respectively. From these,

we obtain the values for Ã�n� and C̃�q� collected in the fol-
lowing table:

n 0.5 1 2 q 1.1 2 5

Ã�n� 1.488 0.9458 0.6826 C̃�q� 1.565 2.105 3.305

We now compare the film thicknesses computed from the
asymptotic formulas �5.19a� and �5.20a� with the values of
h�=hB for which a type I meniscus solution was obtained
numerically for the steady state equations.

For the power-law model, the results are shown in Figs. 4
and 5. For all three values of n, the asymptotic and the nu-
merical solution agree quite well up to values of � near and
above 0.1. Smaller values of n seem to lead to better agree-
ment, which might have been expected since for larger n,
smaller powers of � appear in the asymptotic expansions for
h�, suggesting that higher corrections have a stronger im-
pact.

For the Ellis model, we first fix q=2 and vary E over two
orders of magnitude. The agreement is good, up to �=0.1 for
the E=0.5 and 5 case and to a somewhat lesser extent for
E=50. For the leading order result �5.20a�, increasing E in-
creases the coefficient and if this is the case also for the
coefficients in the next corrections, this could explain why
the agreement deteriorates for larger E.

Next, we keep B=0.5 fixed and vary q. Agreement is
good up to �=0.1 for q=2 and 5, however, for q=1.1, there
is a notable though decreasing discrepancy even down to
values of 10−6 for �. The reason for this can be easily seen
from the asymptotics: The dominant terms of the steady state

0.001 0.01 0.1 1
ε

0.01

0.1

1

h 8

FIG. 4. Comparison of the type I meniscus film thicknesses for
the power-law model obtained from the numerical solution of the
steady state equation �symbols� and the asymptotic formula �lines�.
Shown are the results for three different values of the power law
exponent, n=0.5 �− − and ��, n=1 �— and +�, and n=2 �¯ and ��.
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FIG. 5. Comparison of the type I meniscus film thicknesses for the power-law model obtained from the numerical solution of the steady
state equation �symbols� and the asymptotic formula �lines�. In �a�, left, results are shown for fixed q=2 and three different values of E,
E=0.05 �− − and ��, E=0.5 �— and +�, and E=5 �¯ and ��. In �b�, right, results are shown for fixed E=0.5 and three different values of
q, q=5 �− − and ��, q=2 �— and +�, and q=1.1 �¯ and ��.
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problem �5.13� for the Ellis model in inner scales and the
neglected term on the left-hand side become of the same
order as q→1 from above.

VI. CONCLUSIONS

In this study we derived lubrication models for the drag-
out problem at variable inclination angle for some of the
most popular viscosity models from the underlying free
boundary problem governed by the equations of momentum
and mass conservation. A system of ordinary differential
equations for the steady states, that is obtained from the lu-
brication equations, is investigated using phase plane analy-
sis. This yields criteria for the possibility of type I, corre-
sponding to the monotone meniscus profile and type II,
corresponding to the spatially oscillating meniscus profile, as
a function of the rheological parameters. It would be inter-
esting to compare our findings with experimental results and
further explore the relevant parameters that control the shape
of the free boundary, in particular in view of the implications
for many related problems, such as the well-known Brether-
ton problem �22� or the roller-coating problem. We note that
it is clear from our work that it is straightforward to gener-
alize our analysis also to the three-dimensional case.
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APPENDIX A: LUBRICATION EQUATION
FOR THE ELLIS MODEL

As before we balance in the x-momentum equation px
with the dominant viscous stress term �z

xz. Then

P =
�0U

2�H
.

Balancing �z
xz in the x-momentum equation with the gravity

term yields

H = � �0U

2�g cos �
�1/2

.

We introduce here the dimensionless viscosity by

�̄ =
�0

2
� ,

where

�0

�̄
= 1 + � �̄

�1/2
�q−1

.

Hence

2

�
= 1 + � �0U

2H�1/2
�q−1

��xz�q−1.

The leading order dimensionless equations are Eqs. �3.6a�,
�3.6b�, �3.6c�, �3.7a�, and �3.7b� where �zx=−�uz. These can

be integrated to yield the expression for the component of
the stress tensor

�xz = − ��x,t��h − z� ,

which can now be used to derive an expression for the ve-
locity, since �uz=��h−z�. Hence

uz = �
h − z

�
=

1

2
��h − z��1 +

��xz�q−1

Eq−1 �
=

1

2
��h − z��1 +

���q−1�h − z�q−1

Eq−1 � .

We assume h�z and get

uz =
1

2
���h − z� +

����q−1�h − z�q

Eq−1 � .

Integrating this with respect to z and using the no-slip con-
dition, we find

u =
�

2
�hz − z2� +

����q−1

2Eq−1 � − 1

q + 1
�h − z�q+1 +

1

q + 1
hq+1� + 1.

Hence we get for the flux

Q = 	
0

h

udz =
�

2
��hz − z2��0

h

+ 
����q−1

2Eq−1 � 1

�q + 1��q + 2�
�h − z�q+2

+
1

q + 1
hq+1z��

0

h

+ �z�0
h

=
�

2
�h3

2
−

h3

6
� +

����q−1

2Eq−1 � 1

�q + 1�
hq+2

+
1

�q + 1��q + 2�
hq+2� + h .

Therefore we get

Q = 	
0

h

udz =
1

2

�

h3

3
+

����q−1

Eq−1

hq+2

q + 2
� + h ,

which we plug into the kinematic condition to obtain the
lubrication equation.

Using the time scaling t→3t we get finally the following
lubrication equation for the Ellis model:

�th = − �x
1

2
��h3 +

3

q + 2

1

Eq−1����q−1hq+2� + 3h� ,

where we rescaled time as t→3t.

APPENDIX B: LUBRICATION EQUATION
FOR THE CARREAU MODEL

Again we nondimensionalize as before and assume addi-
tionally that the new parameter 
 is scaled as


̄ = 
T = 
��T ,

i.e., 
=O�1/�� and 
�=O�1�. Hence
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� = �0
1 + �

̇

�
�c��k−1�/c

= �0�1 + �
�
̇�c��k−1�/c

and the shear stress components are

�̄xx = −
�0U

H
�2ux�1 + �

̇�c��k−1�/c,

�̄xz = −
�0U

H
�uz + �2wx��1 + �

̇�c��k−1�/c,

�̄zz = −
�0U

H
�22wz�1 + �

̇�c��k−1�/c.

Integrating the system �3.6a�, �3.6b�, �3.6c�, �3.7a�, and
�3.7b� once with respect to z we find

uz�1 + �
�uz�c��k−1�/c = ��x,t��h − z� .

If we define

�: = �
�uz�c, and g�x,z,t�: = �
�����h − z��c

we obtain the equation

��1 + ��k−1 = g

and

uz =
��h − z�

�1 + ��g���k−1�/c .

Upon integrating this once, it is convenient to change inte-
gration variables to �, via

dz = −
g�1−c�/c

c
����
dg and dg =

1 + k�

�1 + ��2−k

which leads to

u�x,z,t� = −
F���g��z�� − F���g��0��

c
�2�
+ 1,

where

F��� =	 ��2−c�/c�1 + k��
�1 + ���1−k�/�c+1�d� .

To derive an expression for the flux involves the integral

	
0

h

�F��„g�z�…� − F��„g�0�…��dz

= −
1

c
����	�0

0

�F��� − F��0��
��1−c�/c�1 + k��
�1 + ���1−k�/c+1 d� .

If we note that

	
�0

0 1 + k�

�1 + ���3−k�/2�1/2dw

= − 2�0
1/2F1 −

2

3
k�3/2F2 − 	

�0

0 1 − k2�2

�1 + ��2−n�1/2dw

= 2�0
1/2F3 −

2

5
k2�5/2F4,

where

F1 = F�1

2
,
3 − k

2
;
3

2
;− �0� ,

F2 = F�3 − k

2
,
3

2
;
5

2
;− �0� ,

F3 = F�1

2
,2 − k;

3

2
;− �0� ,

F4 = F�5

2
,2 − k;

7

2
;− �0� .

Hence we obtain for the flux

QC�x,t� = 	
0

h

udz =
��0


�3�k + 1�
1

����
 k�0 − 1

��0 + 1��1−k�/2

��F1 +
k�0

3
F2� + �F3 −

k2�0
2

5
F4�� + h

and the corresponding lubrication equation

�th = − �xQ
C

with the boundary condition at x→ ±�,

lim
x→−�

h = h�, lim
x→−�

hx = 0,

lim
x→�
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x→�
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